II B.Tech - I Semester - Regular Examinations - MARCH 2021

ENGINEERING THERMODYNAMICS
 (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Specify clearly, following system can be treated as open/closed/isolated.
(i) Boiler (ii) Mixture of ice and water in a metal container (iii) heating of air in cycle tube, (iv) nozzle.
b) Explain PMM-2
c) Can entropy of universe ever decrease? Why?
d) Define dryness fraction of steam.
e) Write the expression for efficiency of Brayton cycle

PART - B
UNIT - I
2. a) What do you understand by Quasi-Static process? Explain its significance in thermodynamics.
b) A mass of gas is compressed in a quasi-static process from $80 \mathrm{kPa}, 0.1 \mathrm{~m}^{3}$ to $0.4 \mathrm{MPa}, 0.03 \mathrm{~m}^{3}$. Assuming that the pressure and volume are related by $\mathrm{pv}^{\mathrm{n}}=$ constant, find work done by the gas system.
3. a) What do you understand by 'internal energy' of a system? Prove that it is property of a thermo dynamic system.
b) In a steady flow apparatus, 135 kJ of work is done by each kg of fluid. The specific volume of the fluid, pressure, and velocity at the inlet are $0.37 \mathrm{~m}^{3} / \mathrm{kg}, 600 \mathrm{kPa}$, and $16 \mathrm{~m} / \mathrm{s}$. The inlet is 32 m above the floor, and the discharge pipe is at floor level. The discharge conditions are $0.62 \mathrm{~m}^{3} / \mathrm{kg}, 100$ kPa , and $270 \mathrm{~m} / \mathrm{s}$. the total heat loss between the inlet and discharge is $9 \mathrm{~kJ} / \mathrm{kg}$ of fluid. In flowing through this apparatus, does the specific internal energy increases or decrease, and by how much?

UNIT - II

4. a) Why the COP of a heat pump is higher than that of a refrigerator, if both operate between the same temperature limits?
b) The interior of refrigerator is provided by incandescent lamps whose switches are actuated by the opening of the refrigerator door. Consider a refrigerator whose 40 W bulb remains on continuously as a result of malfunction of the switch. If the COP is 1.3 and cost of electricity is 8 $\mathrm{Rs} / \mathrm{kWh}$, determine the increase in the energy consumption and its cost.

OR

5. a) Why Carnot cycle cannot be realized in practical?
b) Two reversible heat engines A and B are arranged in series, A rejecting heat directly to B. Engine A receives 200 KJ at $421^{\circ} \mathrm{C}$ while B is in communication with a cold sink at $4.4^{\circ} \mathrm{C}$. If the work output of A is twice that of B . Find (i) the intermediate temperature between A and B (ii) efficiency of each engine (iii) heat rejected to cold sink.

UNIT-III

6. a) What do you mean by 'Clausius inequality'? Explain
b) $0.03 \mathrm{~m}^{3}$ of nitrogen contained in a cylinder behind a piston is initially at 1.05 bar and $15^{\circ} \mathrm{C}$. The gas is compressed isothermally and reversibly until the pressure is 4.2 bar. Calculate the change of entropy, the heat flow, and the work done, and sketch the process on a $p-v$ and $T-s$ diagrams. Assume nitrogen to act as a perfect gas. Molecular weight of nitrogen $=28$.

OR
7. a) Derive an expression for decrease in available energy when heat is transferred through a finite temperature difference
b) Calculate the decrease in available energy when 25 kg of water at $95^{\circ} \mathrm{C}$ mix with 35 kg of water at $35^{\circ} \mathrm{C}$, the pressure being taken as constant and temperature of the surroundings being $15^{\circ} \mathrm{C}\left(\mathrm{C}_{\mathrm{p}}\right.$ of water $\left.=4.2 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}\right)$

UNIT - IV

8. a) Draw the phase equilibrium diagram for a pure substance on T - S plot with relevant constant property lines and explain.
b) A vessel having a capacity of $0.05 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $245^{\circ} \mathrm{C}$. The mass of the liquid present is 10 kg . Calculate the pressure, mass, specific volume, specific enthalpy, specific entropy, and specific internal energy.

OR

9. a) Explain the terms: Degree of super heat, degree of subcooling and give the procedure to calculate the properties of superheated steam.
b) A large insulated vessel is divided into two chambers, one containing 5 Kg of dry saturated steam at 0.2 MPa and other 10 kg of steam 0.8 quality at 0.5 MPa . If the partition between the chambers is removed and the steam is mixed thoroughly and allowed to settle, find the final pressure, steam quality and entropy change in the process.

UNIT - V

10. a) Derive an expression for thermal efficiency of a 'Lenoir Cycle'.
b) An engine is to operate on Otto cycle with the following data: Maximum temperature 1400 K , exhaust temperature 700 K . State of air at the beginning of compression 0.1 $\mathrm{MPa}, 300 \mathrm{~K}$. Estimate the compression ratios, the maximum pressures, efficiencies, and rate of work output (for $1 \mathrm{~kg} / \mathrm{min}$ of air) of the respective cycle.

OR

11. a) Derive the expressions for efficiency and mean effective pressure of Diesel cycle.
b) An Ericsson cycle operating with an ideal regenerator works between 1100 K and 288 K . The pressure at the beginning of isothermal compression is 1.013 bar. Determine i) work per kg of air, and ii) the cycle efficiency.
